
www.manaraa.com

School of Computer Science and Software Engineering

Monash University

Bachelor of Computer Science Honours (1608), Clayton Campus

Research Proposal — Semester 1, 2005

The Analysis and Design of Approximation
Algorithms for the Maximum Induced Planar

Subgraph Problem

Kerri Morgan 12837008

Supervisor: Dr. G. Farr



www.manaraa.com

Contents

1 Introduction 1

2 Definitions 2

3 Research Context 2
3.1 Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 Planar Separator Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Planarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Fragmentability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Research Plan and Methods 7
4.1 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Current Project Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 Implementation of Algorithms . . . . . . . . . . . . . . . . . . . . . 8
4.2.2 Improvements and modifications . . . . . . . . . . . . . . . . . . . . 8

4.3 Proposed Thesis Chapter Headings . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Timetable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Special Facilities Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Deliverables 10

ii



www.manaraa.com

1 Introduction

A graph is a collection of vertices (or nodes) and connections between pairs of vertices
called edges. Graphs can be used to model many problems in a manner that encapsulates
the essential elements of the problem.

Road networks can be modelled by graphs. Locations can be represented as vertices
and roads connecting locations as edges. Global Positioning Systems (GPS) used by
emergency service vehicles may in some cases use such a model of the road network in
order to navigate to locations in the most efficient manner possible. Software engineering
diagrams use graphs to model complex problems in a simple way whilst retaining essential
information. For example, in structure charts functions are represented as vertices and
edges represent function calls. Graphs can also be used to model social networks. In
this case each vertex represents an individual (or group of individuals) and the edges
represent connections between individuals (or groups of individuals). A family tree is
a simple example of a graph of this type. In this case the nodes represent individuals
and the edges represent family connections such as the parent-child relationship and the
husband-wife relationship. Graphs are frequently used to model electronic circuits where
the edges represent wires and the vertices represent connections between the wires.

One famous problem that was solved using graph theory concerned the seven bridges in
the city of Königsberg. Was it possible to take a journey that traversed all seven bridges
but did not cross any bridge more than once? In 1735, Leonhard Euler proved that it
was not possible. Euler modelled the problem as a graph where vertices represented land
masses, and each of the edges represented a bridge connecting two land masses. He then
showed that a graph contains such a journey if and only if every vertex has even degree.
Euler’s paper, Solutio problematis ad geometriam situs pertinentis, on the problem was
published in 1736 and is considered to be the first paper on graph theory.

When modelling real-world problems, it is important to be able to produce a good two-
dimensional representation of a graph. Such a representation is used to display the graph
on a screen or print it on a page. Circuit design also uses a two-dimensional representation
of the graph with the layout of the wires on the circuit board being represented by the
layout of the graph.

However, a two-dimensional representation of the graph is not always sufficient. Many
applications require than no edges cross. A graph that can be drawn in the plane without
edge crossings is a planar graph. Many applications take advantage of this representation
and other properties of planarity. For example, in graph drawing the layout of a graph so
that no edges cross is used in circuit design. In this case, a two dimensional representation
with edges crossing would be unsatisfactory as this would represent wires crossing which
would result in short circuits.

While planarity is a useful property, many graphs are nonplanar. Planarisation is the
process of finding a portion (preferably the largest) of the graph that is planar. Many
problems are easier to solve when restricted to the class of planar graphs. Algorithms for
solving problems on planar graphs may in some cases be able to be used on nonplanar
graphs by first planarising the graph. A graph can be planarised either by the removal of
vertices (and their incident edges) or by the removal of edges.

The Maximum Induced Planar subgraph problem is the task of removing the smallest
possible number of vertices from a graph to produce a planar subgraph. Unfortunately
this problem is known to be NP-hard [9]. Approximation algorithms provide a possibly
suboptimal solution in a reasonable amount of time.

The aim of this project is to design and analyse new approximation algorithms for the
Maximum Induced Planar Subgraph problem. The behaviour of the algorithms will be
compared with some of the existing approximation algorithms in terms of running time
and performance.
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In this document, the context of the Maximum Induced Planar Subgraph problem in
graph theory is examined. A general plan for the research method into designing new
algorithms for this problem, and for analysing the behaviour of these new algorithms
and existing algorithms is then presented. A brief review of the work that has been
completed for this project is provided including a section detailing current modifications
and improvements. Finally, the proposed timeline and deliverables for this project are
listed.

2 Definitions

This section introduces some standard definitions that will occur throughout this docu-
ment.

Subgraph A graph G
′
= (V

′
, E

′
) is a subgraph of G = (V, E) if V

′ ⊆ V and E
′ ⊆ E

Induced Subgraph A graph G
′

= (V
′
, E

′
) is an induced subgraph of G = (V, E) if

V
′ ⊆ V and E′ = {uv|u, v ∈ V

′ ∧ uv ∈ E}.
Hereditary A property is said to be hereditary if for every graph G with the property,

every subgraph H ⊆ G also has the property.

Planarise To find a planar subgraph of a graph.

Approximation Algorithm An algorithm for an optimisation problem that produces a
feasible but not necessarily optimal solution in a reasonable amount of time.

Performance Ratio The ratio of the size of solution produced in comparison to the size
of the optimal solution. In the context of the planarisation of graphs, let c be the
number of vertices in the planar graph produced by an approximation algorithm.
Let k be the number of vertices in the optimal solution, that is the largest planar
subgraph. Then the performance ratio of the algorithm on this graph is c/k. The
performance ratio of an algorithm for a class of graphs, provides a lower bound of
the performance ratios of the algorithm on all graphs in the class. The algorithm
will do at least as well as this ratio on every graph in the class.

3 Research Context

3.1 Planarity

A planar graph is a graph that can be drawn in the plane so that no two edges cross.
Consider a graph represented in this way on a plane. If the sections of the plane on which
the vertices and edges were drawn were removed, the remaining areas would correspond to
connected regions called faces. Euler’s polyhedron theorem [14, p.9], commonly known as
Euler’s formula, states that any connected planar graph with n vertices, m edges, and f
faces satisfies n−m+f = 2. This formula has a more general form namely f−m+n−c = 1
which applies for all planar graphs of c components.

From this theorem it can be shown that any planar graph with n ≥ 3 vertices has at
most 3n− 6 edges. If the planar graph is also bipartite, it has at most 2n− 4 edges.

These inequalities are useful in proving that certain graphs cannot be drawn in the
plane. For example, K5 (see Figure 1) is not planar as it has 5 vertices and 10 edges,
which does not satisfy the inequality m ≤ 3n− 6 as 10 6≤ 9. The bipartite graph K3,3 (see
Figure 2) is also not planar as it has 6 vertices and 9 edges which does not satisfy the
inequality m ≤ 2n− 4 as 9 6≤ 8.
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Figure 1: The graph K5.

Figure 2: The graph K3,3.

Kuratowki showed a graph is planar if and only if it does not contain a subgraph
homeomorphic to either K5 or K3,3 [8]. The graphs G1 and G2 are homeomorphic if they
can both be obtained from a graph G by a series of subdivisions. A subdivision of an edge
uv of G adds a new vertex w to V (G) and replaces the edge uv with two edges uw and
wv.

Planarity is a hereditary property of graphs, so that if a graph G is planar then any
subgraph H of G is also planar. This hereditary property of planar graphs allows the use
of many “divide-and-conquer” algorithms on problems involving planar graphs [12].

3.2 Planar Separator Theorem

Consider the task of dividing a planar graph into two disjoint planar subgraphs by remov-
ing a subset of the vertices. It is sometimes preferable that each of these two subgraphs
contains a significant proportion of the vertices of the original graph, and that the number
of vertices removed from the original graph is as small as possible. A planar separator the-
orem shows that no more than some small proportion of vertices is required to be removed
from any planar graph in order to produce two substantial disjoint planar subgraphs.

Lipton and Tarjan [11] showed that the vertices of any n-vertex planar graph “can be
partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in
B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2

√
2n

vertices”. As A and B have no edges in common, removing the vertices in C from the
graph separates the graph into two subgraphs. Due to the hereditary nature of planarity,
both these subgraphs are also planar. Lipton and Tarjan’s paper provides an algorithm
which finds a partition satisfying the above properties in O(n) time. Hence, Lipton and
Tarjan provided the means to effectively divide a planar graph into two planar subgraph,
each of a reasonable size, by removing only a small number of vertices. The two subgraphs
are planar and thus can also be divided by the same process.

Many algorithms have combined Lipton and Tarjan’s separator theorem with divide
and conquer techniques on planar graphs to provide more efficient solutions for problems
such as boolean circuit complexity, graph embedding, pebbling, and maximum match-
ing [12].

However, many graphs are nonplanar. It may be possible in some cases to apply these
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algorithms to nonplanar graphs, by first planarising the graph. A solution for the planar
subgraph can then be found by using the “divide-and-conquer” techniques previously
discussed. Let R denote the vertices removed to form the planar subgraph. These vertices
also form an induced subgraph. This graph can be planarised and the techniques for planar
subgraphs be applied to its planar subgraph. By repetitively applying this technique until
no vertices remain in the set R, a set of solutions can be found for a series of planar
subgraphs of the original graphs. None of these subgraphs have any vertices in common,
but there may be edges in the original graph that connect two subgraphs. If the solutions
for the subgraphs can be effectively combined, a solution for the original graph can be
found.

Algorithms for drawing nonplanar graphs used in applications such as circuit layout
also often initially planarise the graph, then utilise one of the many existing algorithms
for drawing planar graphs [7].

3.3 Planarisation

It has been seen that it is useful to be able to find a planar subgraph of a graph. A
subgraph of a graph can be formed either by removing edges or removing vertices from
the original graph.

The Maximum Planar Subgraph problem for a graph G = (V, E) is the task of finding
the largest set E

′ ⊆ E such that the subgraph G
′
= (V

′
, E

′
) where V

′
= {v ∈ V ∧ v is

incident to e ∈ E
′} is planar. A similar problem is the Maximal Planar Subgraph problem

where the subgraph produced may not be of maximum size, but no edge can be added to
the set of edges in the subgraph without destroying the planarity property.

The Maximum Planar Subgraph problem is known to be NP-hard [13]. This necessi-
tates the use of good approximation algorithms in order to find a solution in a reasonable
amount of time. The solutions found may not be optimal.

Several approximation algorithms have been studied for the Maximum Planar Sub-
graph Problem. Călinescu, Fernandes, Finkler and Karloff [2] produced an approximation
algorithm for finding planar subgraphs with a performance ratio of 4/9.

The Maximum Induced Planar Subgraph problem for a graph G = (V, E) is the task of
finding the largest set V ′ ⊆ V such that the subgraph G′ = (V ′, E′) where E′ = {uv|uv ∈
E ∧ u, v ∈ V ′} is planar. Again there is a related Maximal Induced Planar Subgraph
problem. In contrast to the Maximum Planar Subgraph problem, this problem has had
little attention. The Maximum Induced Planar Subgraph problem is known to be NP-hard
[9]. Thus good approximation algorithms are required to find a solution that may not be
optimal in a reasonable amount of time.

Halldórsson and Lau [6] produced a linear time algorithm for graphs of maximum
degree at most d with a performance ratio of 1/ d(d + 1)/3e. They achieve this by parti-
tioning the graph into at most 1/ b(d + 1)/3c subgraphs of degree at most 2. Each of these
parts consists of a forest and is thus planar. The largest of these parts is chosen as the
planar subgraph. This algorithm is limited to producing planar subgraphs of maximum
degree at most 2.

Edwards and Farr [3] presented a polynomial time algorithm for graphs of n vertices
and maximum degree at most d. This algorithm finds an induced planar subgraph of at
least 3n/(d + 1) vertices, which implies a performance ratio of 3/(d + 1). This is at least
comparable to the Halldórsson and Lau algorithm, but in cases where d 6≡ 2 (mod 3)
is considerably better. The subgraphs produced by Edwards and Farr’s algorithm are
not constrained to having maximum degree of at most two as are those produced by
Halldórsson and Lau’s algorithm. The algorithm divides the vertices of the graph into two
sets, R (those not in the induced planar subgraph) and P (those in the induced planar
subgraph). P is initially empty. The algorithm creates a planar subgraph by incrementally
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adding vertices from the original graph to P or interchanging a vertex in P with one in R
whilst maintaining planarity of the graph 〈P 〉. The restrictions on the selection of vertices
to be added to P are stricter than required to maintain planarity, but enable certain
properties in the graph to be maintained which allows the algorithm’s performance to be
analysed.

The subgraph produced by this algorithm is not necessarily maximal. The authors
note that in some cases it is possible to add an additional vertex to P after the algorithm
has stopped whilst maintaining planarity.

Another algorithm for finding large induced planar subgraphs by Edwards and Farr [5]
achieves a similar bound on performance to their previous algorithm, but can be shown to
guarantee the same performance on additional classes of graphs, namely graphs of average
degree at most d. That is, for a graph of n vertices with average degree at most d ≥ 4,
or a graph that is connected and has average degree d ≥ 2, it finds an induced planar
subgraph of at least 3n/(d + 1) vertices. As in their previous algorithm, this algorithm
again divides the set of vertices in the original graph into two sets P and R. However,
in this case P initially contains all vertices of the original graph. r(G) is defined to be
the reduced graph of G, where G is reduced by a series of operations that can be applied
whilst maintaining planarity. A graph is considered to be reduced when none of these
operations can any longer be applied. The algorithm iteratively removes the vertex of
highest degree in the graph r(〈P 〉) whilst 〈P 〉 is nonplanar. For any graph G, let p(G) be
the size of the smallest set X of vertices of G such that G−X is planar. It can be shown
that p(G) ≤ ∑

v∈V (r(G))((dr(G)(v)− 2)/(dr(G)(v) + 1)) [5]. To avoid the cost of testing for
planarity each iteration, Edwards and Farr use a loop condition that the size of R must
be less than ρ =

⌊∑
v∈V (r(G))((dr(G)(v)− 2)/(dr(G)(v) + 1))

⌋
.

In this article the former algorithm by Edwards and Farr will be referred to as the
Vertex Addition algorithm, whilst the latter algorithm will be referred to as the Vertex
Removal algorithm. Both these algorithms give scope for further research. Each guar-
antees an induced planar subgraph of at least some bounded number of vertices. By
examining the behaviour of the algorithms in practice on randomly generated graphs,
more information may be gleaned regarding the performance bounds in terms of the size
of the subgraphs found. The performance bounds of the Halldórsson and Lau algorithm
are the same as that of the Vertex Removal algorithm when d ≡ 2 (mod 3). A comparison
of the actual performance of these two algorithms in practice would give a measure of the
additional benefit that can be derived by not limiting the subgraph to having maximum
degree at most 2.

Forest subgraphs are inherently planar. The planar subgraphs produced by Halldórsson
and Lau’s algorithm are of degree at most two. Components of these subgraphs are
either paths or cycles. Some of the power of the first algorithm by Edwards and Farr is
gained by operations that encourage subgraphs that maintain either a tree-like structure
or outerplanarity. However, it does not favour operations that maintain these properties
above the other operations. Liebers comments in her discussion on the Maximal Induced
Planar Subgraph problem that she is unaware of any work investigating the impact of
different vertex orderings [10]. It is possible that the order in which the vertices are added
to P in the Vertex Removal algorithm may affect the size of the subgraph produced by
the algorithm. By favouring vertices whose addition does not destroy the tree structure
(and when this is no longer possible outerplanarity), the planar subgraph remains in a
state which maximizes the possibilities for including additional vertices.

3.4 Fragmentability

Consider the task of removing as few vertices as possible from a graph in order to break
the graph into small components. One method to achieve this is to first use the Maximum
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Induced Planar Subgraph problem. The algorithms by Edwards and Farr, and Halldórsson
and Lau, provide a bound on the minimum proportion of vertices required to be removed
in order to planarise a nonplanar graph. A planar graph can then be divided into two
planar subgraphs by removing relatively few vertices using an algorithm such as the one
presented by Lipton and Tarjan in their paper on the planar separator theorem [11]. This
process can be repetitively performed on the planar subgraphs until the entire graph has
been broken into small components. Only a small number of vertices are required to be
removed on each iteration. Together the total number of vertices required for all of these
iterations and the number of vertices removed in order to planarise the original graph
provide the number of vertices whose removal will break the graph into components of at
most some size C. It is interesting to consider how few vertices can be removed in order
to fragment a graph into components of at most size C.

Fragmentability provides a measure of how vulnerable graphs are to being broken
into components of bounded size by the removal of a small number of vertices. A graph
G = (V, E) is (C, ε)-fragmentable if and only if there exists a set X ⊆ V , |X| ≤ ε|V |,
whose removal results in G \ X consisting of components of size at most C. A class of
graphs is said to be ε-fragmentable if and only if there exists an integer C such that all
graphs in the class are (C, ε)-fragmentable. The coefficient of fragmentability for a class
of graphs Γ, denoted by cf (Γ), is defined as cf (Γ) = inf{ε : Γ is ε-fragmentable}.

Edwards and Farr [4] considered the fragmentability of classes of graphs. Any class of
graphs for which there exists an appropriate separator theorem is known to have cf (Γ) = 0.
A separator theorem exists for planar graphs [11]. Hence for any 0 ≤ ε ≤ 1 there exists
an integer C such that any planar graph of n vertices can be broken into components of
a most size C by removing at most εn vertices.

It was shown that if one class of graphs could be reduced to another class of graphs
by removing a proportion of the vertices, and the coefficient of fragmentability is known
for the second class, then an upper bound on the coefficient of fragmentability for the first
class could be calculated. Edwards and Farr proved that given two classes of graphs Γ
and Γ

′
that if for any graph G ∈ Γ by removing at most ε|V (G)|+ A vertices (where ε is

a non-negative real number and A is a non-negative integer) the resulting graph was an
element of Γ

′
, then cf (Γ) ≤ cf (Γ

′
) + ε− εcf (Γ

′
).

The Maximum Induced Planar Subgraph problem calculates the minimum number of
vertices required to remove to produce an induced planar subgraph. Edwards and Farr
used this to calculate an upper bound on the proportion of vertices that must be removed
from graphs belonging to certain classes of graphs to produce a planar subgraph. For
example, graphs of maximum degree at most d and n vertices were shown to be able to be
made planar by removing at most (d−2)n/(d+1) vertices. As previously mentioned planar
graphs have cf (Γ) = 0. If for a class of graphs Γ, any graph can be reduced to a planar
subgraph by removing at most εn vertices, then the coefficient of fragmentability for this
class is at most ε. Thus if an algorithm for finding the Maximum Induced Planar subgraph
can be shown to find a planar subgraph for any graph belonging to a class Γ by removing
at most ε vertices, then the coefficient of fragmentability for this class of graphs is at most
ε. It is noted that an approximation algorithm may remove more vertices compared to
an algorithm that finds the optimal solution. If the approximation algorithm for the task
requires at most ε vertices to be removed, whereas finding the optimal solution requires
at most ε′ vertices to be removed, then cf (Γ) ≤ ε′ ≤ ε, so the upper bound of cf ≤ ε still
holds although it may not be a tight upper bound.

Edwards and Farr’s analysis of their Vertex Addition and Vertex Removal algorithms
has provided an upper bound on the number of vertices required to be removed by these al-
gorithms to planarise graphs of maximum degree at most d and of average degree at most d
respectively [3, 5]. These bounds provide upper bounds for the coefficient of fragmentabil-
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ity for these classes of graphs. Thus, analysis of algorithms for the Maximum Induced
Planar Subgraph problem can provide useful information about the fragmentabililty of a
class of graphs.

Conversely, the coefficient of fragmentability can be used to provide a lower bound on
the proportion of vertices to remove for certain classes of graphs in the Maximum Induced
Planar Subgraph problem. For example, Edwards and Farr were able to show that the
class of graphs, Γd with maximum degree at most d and d ≥ 2, has (d − 2)/(2d − 2) ≤
cf (Γd) ≤ (d − 2)/(d + 1). If for any graph in Γd, the removal of at most εn vertices will
produce a planar subgraph, then cf (Γd) ≤ ε. Combining these results an lower bound for
ε can be found, namely (d− 2)/(2d− 2) ≤ ε.

4 Research Plan and Methods

4.1 Research Methods

In this project the Halldórsson-Lau, Vertex Removal and Vertex Addition algorithms
will be implemented. Currently a Vertex Subset Removal algorithm is being worked on
by Keith Edwards and Graham Farr. It is intended if possible to also implement this
algorithm. The behaviour in terms of the size of subgraph produced and the running time
of these algorithms will be examined by running these programs on a series of graphs.

Graphs will be randomly generated using a number of random graph generators, in-
cluding the Steger-Wormald [15] algorithm for generating random d-regular graphs, the
Bollobás [1] algorithm for generating random d-regular graphs and Erdös’ classical graph
generator for graphs of average degree d. The Bollobás method generates using a uniform
distribution on d-regular graphs. However, it is much slower than the Steger-Wormald
method. The Steger-Wormald method uses a probability distribution that is similar but
not identical to Bollobás’ method, but as it is much faster the size of graphs it can produce
within a reasonable time is larger. However, as the Steger-Wormald generator proved too
slow when creating very large graphs, an alternative generator (the Morgan generator)
was developed by the author that produces large d-regular graphs quickly. Results of the
approximation algorithms on graphs produced by the various graph generating algorithms
will be compared. If the results are similar on smaller graphs, it may be possible to use
the results on larger graphs produced by the Morgan generator to draw conclusions on the
behaviour of the various algorithms on very large graphs.

The next task in the project is to use the results about the behaviour of the existing
algorithms to aid in the design and implementation of a hybrid algorithm. This algorithm
will be based on the Vertex Addition and Vertex Removal algorithms. At this stage the
algorithm will make a decision for each vertex whether to assign it to P , the planar set,
or R, the removed set. All vertices initially belong to an unassigned set U .

Next a new approximation algorithm for the Maximum Induced Planar Subgraph
problem will be designed. If possible, some mathematical analysis of this algorithm will
be performed. As mentioned earlier there is some scope to examine the effects of ordering
the selection of vertices to be included in the planar subgraph. It may be possible to
include a heuristic function that favours vertices whose addition maintains outerplanarity.
In the Vertex Addition algorithm Edwards and Farr have an operation that interchanges
vertices. They note that this operation maintains the size of P but decreases the number
of edges in 〈P 〉. However, in addition it decreases the number of cycles in 〈P 〉 by at least
one. It may be possible to design an algorithm that initially creates a planar subgraph
that is a forest, then adds vertices whose addition creates as few cycles as possible in the
resulting subgraph. By introducing multiple cycles in a component as late as possible in
the algorithm, outerplanarity is maintained as long as possible.
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Finally, the behaviour of all algorithms will be examined by running them on a series
of randomly generated graphs. The algorithms will be compared on the basis of running
time and size of the planar subgraph produced. Both the worst case and average case will
be considered.

4.2 Current Project Status

4.2.1 Implementation of Algorithms

Both the Vertex Addition and Vertex Removal algorithms have been implemented. These
programs have been tested on a number of small graphs and in each case have successfully
produced the required planar subgraph.

Three graph generators have been implemented. Initially, a generator was implemented
based on the Steger-Wormald algorithm [15], but was found to be too slow when generating
20-regular graphs of 10, 000 vertices. A second generator was implemented based on a
modified version of the Steger-Wormald generator. However, this also proved too slow for
large graphs. Finally, an algorithm was designed by the author. This algorithm has yet
to be fully analysed, but it would appear to have a similar probability distribution to the
Steger-Wormald distribution. A generator based on this algorithm produces a 20-regular
graph of 10, 000 vertices in approximately sixty seconds. The use of this generator will
allow the performance of the approximation algorithms to be tested on much larger graphs
than could be produced by the other generators in a reasonable amount of time.

Currently, a function is being implemented, that allows information about the planar
subgraph produced by the various approximation algorithms to be saved. Each planar
subgraph is checked to see that the number of vertices and the number of edges satisfies
Euler’s inequality m ≤ 3n − 6. While a graph that satisfies this inequality may not
be planar, a graph that does not satisfy this inequality cannot be planar. Currently
all subgraphs produced by the approximation algorithms implemented have satisfied this
inequality. The behaviour of the algorithms on randomly generated graphs of up to 10, 000
vertices has been tested.

4.2.2 Improvements and modifications

In the Vertex Removal algorithm, Edwards and Farr [5] use the loop condition that the size
of R must be less than ρ =

⌊∑
v∈V (r(G))((dr(G)(v)− 2)/(dr(G)(v) + 1))

⌋
. This avoids the

cost of testing for planarity each iteration The value of ρ provides the maximum number
of vertices required to be removed from P . However, it is not a sufficient condition for the
loop. For many graphs, the reduced graph becomes the null graph while |R| < ρ. In these
cases the loop condition holds, but the instructions within the loop cannot be executed,
as there are no vertices in the reduced graph to remove. The condition required for the
algorithm to perform correctly was (|R| < ρ and |r(〈P 〉)| 6= 0). Thus, the Vertex Removal
algorithm was implemented with this modification.

In their discussion on the Vertex Addition algorithm Edwards and Farr understate the
power of the step of type (ii) when they claim that “any step of type (ii) or (iii) decrease
|E(P ) + k(P )| by exactly 1” [3]. In fact any step of type (ii) decreases |E(P ) + k(P )| by
at least 1. Step (ii) occurs when a vertex xi is selected in P to be interchanged with a
vertex x0 in R. The vertex selected lies on a circuit formed by edges in 〈P 〉 and edges
from vertices in P incident to x0. It is known by the selection criteria that vertex xi has
degree at least 3 in 〈P 〉. The only situation when the value |E(P ) + k(P )| is exactly one
is when the degree in 〈P 〉 of the vertex xi being removed from P is three. The increased
benefit of this action may prove useful in the development of future algorithms.
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4.3 Proposed Thesis Chapter Headings

1. Introduction

(a) Background

(b) Aims

2. Planar Graphs

(a) Background

(b) Planar Separator Theorem

(c) Fragmentability of Planar Graphs

(d) The Usefulness of Planarity

3. Planarisation of graphs

(a) Background

(b) Maximum Planar Subgraph Problem

(c) Maximum Induced Planar Subgraph Problem

(d) Approximation Algorithms for the Maximum Induced Planar Subgraph Prob-
lem

i. Existing Algorithms
ii. Vertex Subset Removal Algorithm
iii. Hybrid Algorithm
iv. New Algorithm

4. Random Graph Generation

(a) Erdös’ Classic Graph Generator

(b) Bollobás Random Graph Generator

(c) Steger-Wormald Random Graph Generator

(d) Morgan Graph Generator

5. Experiments

(a) Description of Tests

(b) Results

6. Discussion of Results

7. Conclusion and Further Investigation

8. Bibliography

Appendix A Results

Appendix B Programs
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4.4 Timetable

Table 1: Projected Timetable

Task Completion Date
Implement Vertex Addition Algorithm [3] 23rd March
Implement Quick Random Graph Generator [15] 1st April
Implement Vertex Removal Algorithm [5] 8th April
Implement modified version of Quick Random Graph Generator [15] 15th April
Research Proposal 27th April
Implement a program for collection of data on behaviour of algorithms 3rd May
Implement Erdös’ Classical Graph Generator 10th May
Design and implement random graph generator 12th May
Collect some data on behaviour of algorithms currently implemented 13th May
Interim Presentation 2nd June
Literature Review Draft 10th June
Implement Hybrid Algorithm 17th June
Implement Halldórsson and Lau [6] 8th July
Literature Review 27th July
Implement Vertex Subset Removal Method (if available) 5th August
Testing performance of the above algorithms 12th August
Development of own approximation algorithm 31st August
Thesis Draft 7th September
Further testing of performance of all algorithms 21st September
Final Presentation 24–28th October
Submit Thesis 1st November
Submit Log Book 1st November
Complete Web Site 10th November

4.5 Special Facilities Required

The facilities offered Honours students at Monash University (Clayton) are sufficient to
do the research.

5 Deliverables

1. Design a hybrid algorithm based on Vertex Addition and Vertex Removal algorithms.

2. Design a new approximation algorithm for the Maximum Induced Planar Subgraph
problem.

3. Implement existing approximation algorithms for the Maximum Induced Planar Sub-
graph problem.

(a) Vertex Removal algorithm

(b) Vertex Addition algorithm

(c) Halldórsson and Lau algorithm

(d) Vertex-subset Removal algorithm (if available)
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4. Implement algorithms designed by author for the Maximum Induced Planar Sub-
graph problem

(a) Hybrid algorithm

(b) New algorithm

5. Implement random graph generators

(a) Bollobás method

(b) Steger-Wormald method

(c) Erdös method

(d) Morgan method

6. Experimental Study

• Investigate the behaviour of the above approximation algorithms on a series of
randomly generated d-regular graphs and a series of randomly generated graphs
of average degree d. Data will be collected on the results of these algorithms
for both average-case and worst-case in the following areas:

– Performance in terms of size of subgraph produced.
– Running time.

• Analyse and compare the behaviour of the above approximation algorithms
based on the data collected

7. Final Thesis
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[2] G. Călinescu, C. G. Fernandes, U. Finkler, and H. Karloff. A better approximation
algorithm for finding planar graphs. Journal of Algorithms, 27:269–302, 1998.

[3] K. Edwards and G. Farr. An algorithm for finding large induced planar subgraphs. In
P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing: 9th International Sym-
posium, GD 2001, Lecture Notes in Computer Science 2265, pages 75–83. Springer-
Verlag, Berlin, 2001.

[4] K. Edwards and G. Farr. Fragmentability of graphs. Journal of Combinatorial Theory
(Series B), 82:30–37, 2001.

[5] K. Edwards and G. Farr. Planarization and fragmentability of some classes of graphs.
Technical Report 144, School of Computer Science and Software Engineering, Monash
University, 2003.
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